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Abstract - This article presents two techniques to improve
the calculation of the fuzzy covariance matrix in the Gustafson-
Kessel (GK) clustering algorithm. The first one overcomes prob-
lems that occur in the standard GK clustering when the number
of data samples is small or when the data within a cluster are lin-
early correlated. The improvement is achieved by fixing the ratio
between the maximal and minimal eigenvalue of the covariance
matrix. The second technique is useful when the GK algorithm is
employed in the extraction of Takagi–Sugeno fuzzy model from
data. It reduces the risk of overfitting when the number of train-
ing samples is low in comparison to the number of clusters. This
is achieved by adding a scaled unity matrix to the calculated co-
variance matrix. Numerical examples are presented to demon-
strate the benefits of the proposed techniques.

I. Introduction

The Gustafson-Kessel (GK) algorithm [1] is a powerful
clustering technique with a large number of applications in
various domains including image processing, classification
and system identification [2], [3]. Its main feature is the local
adaptation of the distance metric to the shape of the cluster
by estimating the cluster covariance matrix and adapting the
distance-inducing matrix correspondingly.

However, numerical problems frequently occur in the stan-
dard GK clustering when the number of data samples (in some
clusters) is small or when the data within a cluster are (nearly)
linearly correlated. In such a case, the cluster covariance ma-
trix becomes singular and cannot be inverted to compute the
norm-inducing matrix. This article presents a method to over-
come this singularity problem by fixing the ratio between the
maximal and minimal eigenvalue of the covariance matrix. As
demonstrated by examples, this simple modification signifi-
cantly improves the performance of the GK algorithm.

Fuzzy clustering can also be used to extract fuzzy if–then
rules from data. The ability of the GK algorithm to estimate
local covariance and to partition data into subsets that can be
well fitted with linear sub-models makes it useful for the iden-
tification of Takagi–Sugeno (TS) models [4], [3]. The second
technique proposed in this paper is useful when the GK al-

gorithm is employed in the extraction of TS rules from data.
It reduces the risk of overfitting when the number of train-
ing samples is low relative to the number of clusters. This
is achieved by adding a scaled unity matrix to the calculated
covariance matrix. An application example is presented to
demonstrate the benefits of the proposed techniques.

II. Gustafson–Kessel Clustering

The Gustafson–Kessel [1] algorithm is based on iterative
optimization of an objective functional of the c-means type:
[5], [6]:

J(Z;U,V, {Ai}) =
K∑

i=1

N∑
k=1

(µik)mD2
ikAi

. (1)

Here, U = [µik] ∈ [0, 1]K×N is a fuzzy partition matrix of
the data Z ∈ R

n×N , V = [v1,v2, . . . ,vK ], vi ∈ R
n is a K-

tuple of cluster prototypes and m ∈ [1,∞) is a scalar param-
eter which determines the fuzziness of the resulting clusters.
The distance norm DikAi can account for clusters of different
geometrical shapes in one data set:

D2
ikAi

= (zk − vi)T Ai(zk − vi) . (2)

The metric of each cluster is defined by a local norm-inducing
matrix Ai, which is used as one of the optimization variables
in the functional (1). This allows the distance norm to adapt to
the local topological structure of the data. The minimization
of the GK objective functional is achieved by using the
alternating optimization method according to the following
well-known algorithm.

Given the data set Z, choose the number of clusters
1 < K < N , the weighting exponent m > 1 (usually
2), the termination tolerance ε > 0 (usually 10−3) and the
cluster volumes ρi (usually 1). Initialize the partition matrix
randomly, such that U(0) ∈ MfK (i.e., belongs to the fuzzy
partitioning space [6]).
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Repeat for l = 1, 2, . . .

Step 1: Compute cluster prototypes (means):

v(l)
i =

∑N
k=1(µ

(l−1)
ik )mzk∑N

k=1(µ
(l−1)
ik )m

, 1 ≤ i ≤ K .

Step 2: Compute the cluster covariance matrices:

Fi =
∑N

k=1(µ
(l−1)
ik )m(zk − v(l)

i )(zk − v(l)
i )T

∑N
k=1(µ

(l−1)
ik )m

,

1 ≤ i ≤ K .

Step 3: Compute the distances:

D2
ikAi

= (zk − v(l)
i )T

[
ρi det(Fi)1/nF−1

i

]
(zk − v(l)

i ),

1 ≤ i ≤ K, 1 ≤ k ≤ N .

Step 4: Update the partition matrix:
for 1 ≤ k ≤ N

if DikAi > 0 for 1 ≤ i ≤ K ,

µ
(l)
ik =

1∑K
j=1(DikAi/DjkAj )2/(m−1)

,

otherwise

µ
(l)
ik = 0 if DikAi > 0, and µ

(l)
ik ∈ [0, 1]

with
K∑

i=1

µ
(l)
ik = 1 otherwise .

until ‖U(l) − U(l−1)‖ < ε.

The above-mentioned numerical problems occur in Step 3
of the algorithm where the cluster covariance matrix F i is in-
verted. If the number of data samples is small or when the data
within a cluster are linearly correlated, the covariance matrix
may become (nearly) singular. The following section presents
a simple and effective solution to this problem.

III. Singularity of the covariance matrix

Recall that the eigenvalues and eigenvectors of the covari-
ance matrix describe the shape and orientation of the clus-
ters, see Fig. 1. When an eigenvalue is zero or when the ra-
tio between the maximal and the minimal eigenvalue, i.e., the
condition number of F, is very large (say 1020) the matrix is
nearly singular. In such a case, the inverse in Step 3 cannot
be calculated. Also the normalization to a fixed volume fails,
as the determinant (the volume of the covariance matrix) be-
comes zero and the following formula thus cannot be applied:

det(Fi)1/nF−1
i . (3)

v

√λ1

√λ2

φ2

φ1

Fig. 1. Equation (z−v)T F−1(z−v) = 1 defines a hyperellipsoid.
The length of the jth axis of this hyperellipsoid is given by

√
λj

and its direction is spanned by �j , where λj and �j are the jth
eigenvalue and the corresponding eigenvector of F, respectively.

A straightforward way to avoid numerical problems is to con-
strain the ratio between the maximal and minimal eigenvalue
such that it is smaller than some predefined threshold (in our
examples, we used 1015). When this threshold is exceeded,
the minimal eigenvalue is increased such that the ratio equals
to the threshold and the covariance matrix is reconstructed by:

F = ΦΛΦ−1

where Λ is a diagonal matrix containing the limited eigenval-
ues and Φ is a matrix whose columns are the corresponding
eigenvectors.

Figure 2 shows an example of a data set that cannot be clus-
tered with the standard GK algorithm, because of numerical
problems. The reason is that the data samples in the three lin-
ear segments are completely correlated. By using the above
technique, numerical problems are avoided and the improved
GK algorithm finds the expected partition into three linear
segments. The principal directions of the clusters perfectly
coincide with the data. This model then explains 99.85% of
the variance in the data.
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Fig. 2. Example of a data set with linear clusters.

IV. Overfitting problem

The above modification prevents the GK algorithm from
running into numerical problems. However, as a result one
can get clusters that are extremely long in the direction of the
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largest eigenvalues and have little relationship with the real
distribution of the data. This can cause overfitting of the data
and consequently one obtains a poor model.

This problem occurs mainly when the number of data
points in a cluster becomes too low. In such a case, the com-
puted covariance matrix is not a reliable estimate of the under-
lying data distribution [7]. One way to tackle this problem is
to limit the ratio between the maximal and minimal eigenval-
ues even further than described in the previous section. This
will prevent the extreme elongation of the clusters. Another
way is to add a scaled identity matrix to the covariance ma-
trix. Tadjudin [7] and Friedman [8] describe several different
methods to improve the covariance estimation. Inspired by
these methods, we propose the following estimate for the GK
algorithm:

Fnew
i = (1 − γ)Fi + γ det(F0)1/nI, (4)

where γ ∈ [0, 1] is a tuning parameter and F0 is the covari-
ance matrix of the whole data set. Depending on the value of
γ, the clusters are forced to have a more or less equal shape.
When γ is 1, all the covariance matrices are equal and have
the same size, which of course limits the possibility of the
algorithm to properly identify clusters.

As F is based on the whole data set, its value does not de-
pend on the number of clusters. The volumes of F i, however,
decrease with the increasing number of clusters. This means
that an increase of the number of clusters makes the clusters
rounder. The term det(F)1/n is included to reduce the tuning
effort involved. The formula scales with the included volume
of the total data set.

A slight disadvantages of this method is the extra tuning pa-
rameter γ. However, when using the GK algorithm to extract
fuzzy models from off-line data, it is usually not a problem
to include an extra parameter and tune it in cross-validation
runs. Furthermore, it is expected that the performance of the
clustering algorithm will decrease when there are sufficient
training data available to construct the covariance matrix.

V. Modified Gustafson-Kessel algorithm

The complete Gustafson-Kessel algorithm including the
two above modifications is given below.

Given the data set Z, choose the standard parameters K , m,
ε, ρi, the condition number threshold β and the weighting
parameter γ. Initialize the partition matrix and compute the
covariance matrix F0 of the whole data set.

Repeat for l = 1, 2, . . .

Step 1: Compute cluster prototypes (means):

v(l)
i =

∑N
k=1(µ

(l−1)
ik )mzk∑N

k=1(µ
(l−1)
ik )m

, 1 ≤ i ≤ K .

Step 2: Compute the cluster covariance matrices:

Fi =
∑N

k=1(µ
(l−1)
ik )m(zk − v(l)

i )(zk − v(l)
i )T

∑N
k=1(µ

(l−1)
ik )m

,

1 ≤ i ≤ K .

Add a scaled identity matrix:

Fi := (1 − γ)Fi + γ det(F0)1/nI,

Extract eigenvalues λij and eigenvectors φij from Fi.
Find λi max = maxj λij and set:

λij = λi max/β ∀j for which λi max/λij > β

Reconstruct Fi by

Fi = [φi1 . . . φin] diag(λi1, . . . , λin)[φi1 . . . φin]−1

Step 3: Compute the distances:

D2
ikAi

= (zk − v(l)
i )T

[
ρi det(Fi)1/nF−1

i

]
(zk − v(l)

i ),

1 ≤ i ≤ K, 1 ≤ k ≤ N .

Step 4: Update the partition matrix:

for 1 ≤ k ≤ N
if DikAi > 0 for 1 ≤ i ≤ K ,

µ
(l)
ik =

1∑K
j=1(DikAi/DjkAj )2/(m−1)

,

otherwise

µ
(l)
ik = 0 if DikAi > 0, and µ

(l)
ik ∈ [0, 1]

with
K∑

i=1

µ
(l)
ik = 1 otherwise .

until ‖U(l) − U(l−1)‖ < ε.

In a double-precision floating point implementation (e.g.,
under MATLAB), the condition number threshold β will typi-
cally be set to a large number, such as 1015. The setting of the
weighting parameter γ is application dependent and some ex-
perimentation may be needed to find the right value. A MAT-
LAB) code of the algorithm is given in the Appendix.

VI. Application example

In this section we use the GK clustering algorithm to con-
struct Tagaki-Sugeno [4] fuzzy models from data by using the
method described in [3]. The process under study is an en-
zymatic Penicillin–G conversion. The fuzzy model describes
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how the enzyme kinetics depend on the concentrations of the
components involved in the conversion.

We consider the enzymatic conversion (hydrolysis) of
Penicillin–G (PenG) to 6–aminopenicillanic acid (APA) and
phenyl acetic acid (PhAH) at pH of 8.0 and temperature of
310 K by the enzyme penicillin acylase. It is expected that
the conversion rate depends on the concentrations of PenG,
APA and PhAH in a nonlinear way and is proportional to the
enzyme concentration E:

r = E · f(PenG, APA, PhAH)

where the nonlinear function f , is unknown. Data from
10 batch experiments started at different initial conditions
were used to construct a TS fuzzy model for f . The data
were obtained from laboratory experiments performed in a
stirred, thermostated laboratory bioreactor with a volume of
1500 cm3. The laboratory set-up is depicted in Fig. 3. More
details about this process can be found in [9].

Temperature

50.0 ml DOS

8.00 pH

RS232

A/D

pH

Base

Fig. 3. Experimental setup.

In total, 816 data points were available for identification.
Additional experiments were carried out to validate the model.
Some typical experiments are shown in Fig. 4.

The TS rules are of the following form:

If PenG is Ai1 and APA is Ai2 and PhAH is Ai3

then re = aT
i [PenG APA PhAH]T + bi .

The membership functions Ai, and the consequent parame-
ters ai, bi are found through GK clustering in the Cartesian
product space Z = PenG × APA × PhAH × re.

Note that the identification experiments were not suffi-
ciently exciting the system and the data may be highly corre-
lated in the four-dimensional clustering space Z . This is con-
firmed by observing the results of the standard GK algorithm,
which fails to find clusters for K > 2 (see Table I, where
’–’ means that the clustering failed due to numerical prob-
lems). By limiting the maximal ratio of the eigenvalues, the
numerical problems are avoided. With more than 3 clusters,
however, the performance of the obtained model is decreas-
ing. When the identity matrix is added according to equation
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(a) PenG concentration.
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(b) APA concentration.
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(c) PhAH concentration.

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

Time [min]

C
on

ve
rs

io
n 

ra
te

 [
m

ol
/s

/U
]

(d) Conversion rate re.

Fig. 4. Experimental data from some typical batch experiments. The
three curves in each graph represent experiments started from
different initial conditions.

(4), the performance of the model remains approximately at
the same level. The same is true when the eigenvalues are
limited.

TABLE I
PERFORMANCE OF THE FUZZY MODEL WITH THE DIFFERENT

COVARIANCE ESTIMATIONS METHODS.

2 clust. 3 clust. 4 clust. 5 clust.
original 95.4 % – – –
cond. number 95.4 % 95.9 % 80.8 % 79.8 %
add diag. matrix 95.1 % 91.9 % 97.3 % 95.9 %
limit eigenvalue 95.2 % 96.5 % 97.7 % 93.6 %

All parameters were kept the same for the different methods
(even the random initialization of the algorithm). The model
output is calculated using 4-fold cross-validation. The perfor-
mance of the resulting models is compared by means of the
variance accounted for (VAF) index, defined by:

VAF =
(

1 − var(y − ym)
var(y)

)
· 100%

where y is the measured output of the system and ym is the
output of the model. A VAF of 100% means a perfect model
prediction.

VII. Conclusions

In this article we proposed a method to avoid numerical
problems that may occur when computing the norm-inducing
matrix in the Gustafson-Kessel (GK) clustering algorithm.
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This solution does not change the performance of the algo-
rithm but guarantees that it is always able to find a partitioning
of the data.

When using the GK clustering algorithm to construct
Tagaki-Sugeno fuzzy models, a certain degree of overfitting
will be experienced for larger numbers of clusters. In such
a case, the performance can be improved by further limit-
ing the maximal ratio between the eigenvalues of the covari-
ance matrix or by adding a scaled identity matrix to the co-
variance matrix. While these latter modifications can im-
prove the performance for small data sets, with a sufficient
number of training samples, this restriction in the freedom of
the algorithm may have an adverse effect and on the perfor-
mance. Some experimentation with the weighting parame-
ter γ may thus be needed. GK clustering and fuzzy iden-
tification software for MATLAB can be downloaded from
http://Lcewww.et.tudelft.nl/̃ babuska.

Acknowledgement

The authors thank the Kluyver Laboratory for Biotechnol-
ogy of the Delft University of Technology for providing the
data.

APPENDIX: Gustafson-Kessel algorithm

In this appendix we give a MATLAB implementa-
tion the modified GK algorithm. Send an e-mail to
R.Babuska@its.tudelft.nl to receive a copy of the M-file.

function [U,V,F] = gk(Z,U0,m,tol,beta,gamma)
% Numerically robust Gustafson-Kessel algorithm
%
% [U,V,F] = GK(Z,U0,m,tol,beta,gamma)
%-------------------------------------------------
% Input: Z ... N by n data matrix
% U0 ... initial fuzzy partition matrix
% or the number of clusters
% m ... fuzziness exponent (m > 1)
% tol ... termination tolerance
% beta ... condition number threshold
% gamma ... weighting for covariance
%-------------------------------------------------
% Output: U ... fuzzy partition matrix
% V ... cluster means (centers)
% F ... cluster covariance matrices

%----------------- prepare matrices --------------
[mz,nz] = size(Z); % data size
c = size(U0,2);
if c == 1, c = U0; end; % # of clusters
mZ1 = ones(mz,1); % aux. variable
nZ1 = ones(nz,1); % aux. variable
V1c = ones(1,c); % aux. variable
U = zeros(mz,c); % partition matr.
d = U; % distance matrix
F = zeros(nz,nz,c); % covariance matr.
f0=eye(nz)*det(cov(Z)).ˆ(1/nz); % "identity" matr.

%----------------- initialize U ------------------
if size(U0,2) == 1,

minZ = V1c’*min(Z); maxZ = V1c’*max(Z);
V = minZ + (maxZ-minZ).*rand(c,nz);
for j = 1 : c,

ZV = Z - mZ1*V(j,:);
d(:,j) = sum((ZV.ˆ2)’)’;

end;
d = (d+1e-100).ˆ(-1/(m-1));
U0 = (d ./ (sum(d’)’*V1c));

end;
%----------------- iterate -----------------------
while max(max(abs(U0-U))) > tol

U = U0; Um = U.ˆm; sumU = sum(Um);
V = (Um’*Z)./(nZ1*sumU)’;
for j = 1 : c,

ZV = Z - mZ1*V(j,:);
f = nZ1*Um(:,j)’.*ZV’*ZV/sumU(j);
f=(1-gamma)*f+gamma*f0;
if cond(f)>beta;
[ev,ei]=eig(f); eimax = max(diag(ei));
ei(beta*ei < eimax) = eimax/beta;
f=ev*diag(diag(ei))*inv(ev);

end;
d(:,j)=sum((ZV*(det(f)ˆ(1/nz)*inv(f)).*ZV)’)’;

end;
d = (d+1e-100).ˆ(-1/(m-1));
U0 = (d ./ (sum(d’)’*V1c));

end
%----------------- create final F and U ----------
Um = U0.ˆm; sumU = nZ1*sum(Um);
for j = 1 : c,

ZV = Z - mZ1*V(j,:);
F(:,:,j) = nZ1*Um(:,j)’.*ZV’*ZV/sumU(1,j);

end;
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