
Neurocomputing ] (]]]]) ]]]–]]]
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

n Corr

MD 208

E-m

Pleas
Neur
journal homepage: www.elsevier.com/locate/neucom
World survey of artificial brains, Part II: Biologically inspired
cognitive architectures
Ben Goertzel a,b,n, Ruiting Lian b, Itamar Arel c, Hugo de Garis b, Shuo Chen b

a Novamente LLC, 1405 Bernerd Place, Rockville, MD 20851, USA
b Fujian Key Lab of the Brain-like Intelligent Systems, Xiamen University, Xiamen, China
c Machine Intelligence Lab, Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, USA
a r t i c l e i n f o

Keywords:

Artificial brains

Cognitive architectures
12/$ - see front matter & 2010 Elsevier B.V. A

016/j.neucom.2010.08.012

esponding author at: Novamente LLC, 1405 B

51, USA.

ail addresses: ben@goertzel.org, bengoertzel@

e cite this article as: B. Goertzel, et
ocomputing (2010), doi:10.1016/j.n
a b s t r a c t

A number of leading cognitive architectures that are inspired by the human brain, at various levels of

granularity, are reviewed and compared, with special attention paid to the way their internal structures

and dynamics map onto neural processes. Four categories of Biologically Inspired Cognitive

Architectures (BICAs) are considered, with multiple examples of each category briefly reviewed, and

selected examples discussed in more depth: primarily symbolic architectures (e.g. ACT-R), emergentist

architectures (e.g. DeSTIN), developmental robotics architectures (e.g. IM-CLEVER), and our central

focus, hybrid architectures (e.g. LIDA, CLARION, 4D/RCS, DUAL, MicroPsi, and OpenCog). Given the state

of the art in BICA, it is not yet possible to tell whether emulating the brain on the architectural level is

going to be enough to allow rough emulation of brain function; and given the state of the art in

neuroscience, it is not yet possible to connect BICAs with large-scale brain simulations in a

thoroughgoing way. However, it is nonetheless possible to draw reasonably close function connections

between various components of various BICAs and various brain regions and dynamics, and as both

BICAs and brain simulations mature, these connections should become richer and may extend further

into the domain of internal dynamics as well as overall behavior.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In Part I of this paper we reviewed the leading large-scale brain
simulations—systems that attempt to simulate, in software, the
more or less detailed structure and dynamics of particular
subsystems of the brain. We now turn to the other kind of
‘‘artificial brain’’ that is also prominent in the research commu-
nity: ‘‘Biologically Inspired Cognitive Architectures,’’ also known
as BICAs, which attempt to achieve brainlike functionalities via
emulating the brain’s high-level architecture without necessarily
simulating its low-level specifics.

The term BICA became commonplace via a 2005 DARPA
funding program, but the concept is as old as the AI field. While
no rigid demarcation separates Biologically Inspired Cognitive
Architectures from Cognitive Architectures in general, the term is
intended to distinguish cognitive architectures drawing signifi-
cant direct inspiration from the brain, from those based
exclusively (or nearly so) on models of mind. The line has become
blurry in interesting new ways of late because some of the
traditional mind-inspired cognitive architectures have begun to
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explore biological analogies to their functioning (ACT-R being one
dramatic example, to be discussed below).

The line between BICAs and large-scale brain simulations is a
little clearer. A brain simulation is intended to display not only
closely similar functions to a brain or part thereof, but also closely
similar internal structures and dynamics. A BICA is intended to
display loosely similar functions to a brain, based on internal
structures that are conceptually inspired by the brain (and not
just the mind) but not necessarily extremely similar to the brain.
One would not expect to be able to compare data drawn from the
internals of a BICA and compare it, point for point, with data
drawn from neurological instrumentation.

There are many BICAs out there and the reader may wish to
peruse the proceedings of the 2008 and 2009 AAAI BICA symposia
(http://members.cox.net/bica2009/). Here we review only a small
but representative sampling. Also, the reader who desires a more
thorough review of cognitive architectures, including BICAs and
others, is referred to Duch’s review paper from the AGI-08
conference [1]. Finally, another valuable resource is the spread-
sheet organized and hosted by Alexei Samsonovich at http://
members.cox.net/bica2009/cogarch/, which compares a number
of cognitive architectures in terms of a feature checklist, and was
created collaboratively with the creators of the architectures.

Duch, in his survey of cognitive architectures [1], divides
existing approaches into three paradigms – symbolic, emergentist
cial brains, Part II: Biologically inspired cognitive architectures,
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Fig. 1. Duch’s simplified taxonomy of cognitive architectures.
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and hybrid – as broadly indicated in Fig. 1 [1]. Drawing on his
survey and updating slightly, here we give some key examples of
each. We place little focus on the symbolic paradigm here because
by and large these are not BICAs, but rather psychology-inspired
cognitive architectures. However, we still need to pay symbolic
cognitive architectures some attention because they are related to
the hybrid architectures, which often do fall into the BICA
category.
2. Symbolic architectures versus BICAs

A venerable tradition in AI focuses on the physical symbol
system hypothesis [2], which states that minds exist mainly to
manipulate symbols that represent aspects of the world or
themselves. A physical symbol system has the ability to input,
output, store and alter symbolic entities, and to execute appro-
priate actions in order to reach its goals. Generally, symbolic
cognitive architectures focus on ’’working memory’’ that draws on
long-term memory as needed, and utilize a centralized control
over perception, cognition and action. Although in principle such
architectures could be arbitrarily capable (since symbolic systems
have universal representational and computational power, in
theory), in practice symbolic architectures tend to be weak in
learning, creativity, procedure learning, and episodic and asso-
ciative memory. Decades of work in this tradition has not resolved
these issues, which has led many researchers to explore other
options—such as BICAs.

A few of the more important symbolic cognitive architectures
are as follows:
�

P
N

SOAR [3], a classic example of expert rule-based cognitive
architecture designed to model general intelligence. It has
recently been extended to handle sensorimotor functions,
though in a somewhat cognitively unnatural way; and is not
yet strong in areas such as episodic memory, creativity,
handling uncertain knowledge, and reinforcement learning.

�
 ACT-R [4] is fundamentally a symbolic system, but in his review

Duch classifies it as a hybrid system because it incorporates
connectionist-style activation spreading in a significant role;
and there is an experimental thoroughly connectionist imple-
mentation to complement the primary mainly symbolic
implementation. Its combination of SOAR-style ‘‘production
rules’’ with large-scale connectionist dynamics allows it to
lease cite this article as: B. Goertzel, et al., World survey of artificial
eurocomputing (2010), doi:10.1016/j.neucom.2010.08.012
simulate a variety of human psychological phenomena, but
abstract reasoning, creativity, and transfer learning are still
missing. An article summarizing the strengths and shortcom-
ings of ACT-R appeared recently in BBS [5].

�
 EPIC [6], a cognitive architecture aimed at capturing human

perceptual, cognitive and motor activities through several
interconnected processors working in parallel. The system is
controlled by production rules for cognitive processor and a set
of perceptual (visual, auditory, tactile) and motor processors
operating on symbolically coded features rather than raw
sensory data. It has been connected to SOAR for problem
solving, planning and learning.

�
 ICARUS [7], an integrated cognitive architecture for physical

agents, with knowledge specified in the form of reactive skills,
each denoting goal-relevant reactions to a class of problems.
The architecture includes a number of modules: a perceptual
system, a planning system, an execution system, and several
memory systems. Concurrent processing is absent, attention
allocation is fairly crude, and uncertain knowledge is not
thoroughly handled.

�
 SNePS (Semantic Network Processing System) [8] is a logic,

frame and network-based knowledge representation, reason-
ing, and acting system that has undergone over three decades
of development. While it has been used for some interesting
prototype experiments in language processing and virtual
agent control, it has not yet been used for any large-scale or
real-world application.

While these architectures contain many valuable ideas and
have yielded some interesting results, there is no clear consensus
in the field regarding whether such systems will ever be capable
on their own of giving rise to the emergent structures and
dynamics required to yield humanlike general intelligence using
feasible computational resources. Currently, there seems to be
more of a trend toward incorporating components from symbolic
architectures in hybrid architectures, rather than taking a purely
symbolic approach.

As our focus here is on BICAs rather than cognitive architec-
tures in general, we choose ACT-R as our example to review here
in detail, because this is the symbolic architecture that has been
most closely tied in with human brain structure and function.
2.1. ACT-R

ACT-R is defined in terms of declarative and procedural
knowledge, where procedural knowledge takes the form of
production rules (IF-THEN rules, somewhat similar to in classical
expert systems), and declarative knowledge takes the form of
‘‘chunks’’ formed by combining previous rules into new ones. It
contains a variety of mechanisms for learning new rules and
chunks from old; and also contains sophisticated probabilistic
equations for updating the activation levels associated with items
of knowledge [9]. ACT-R in its original form did not say much
about perceptual and motor operations, but recent versions have
incorporated EPIC, an independent cognitive architecture focused
on modeling these aspects of human behavior.

Fig. 2 [4] displays the current architecture of ACT-R. The flow
of cognition in the system is in response to the current goal,
currently active information from declarative memory, informa-
tion attended to in perceptual modules (vision and audition are
implemented), and the current state of motor modules (hand and
speech are implemented).

The early work with ACT-R was based on comparing system
performance to human behavior, using only behavioral measures,
such as the timing of keystrokes or patterns of eye movements.
brains, Part II: Biologically inspired cognitive architectures,
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Fig. 2. ACT-R architecture.

Fig. 3. An illustration of how the various cortical modules of ACT-R are

coordinated through the procedural module that is associated with the basal

ganglia. VLPFC, ventrolateral prefrontal cortex.
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Using such measures, it was not possible to test detailed
assumptions about which modules were active in the perfor-
mance of a task. More recently, the ACT-R community has been
engaged in a process of using imaging data to provide converging
data on module activity. Fig. 3 [10] illustrates the associations
they have made between the modules in Fig. 2 [4] and brain
regions. Coordination among all of these components occurs
through actions of the procedural module, which is mapped to the
basal ganglia.

In practice, ACT-R seems to be used more as a programming
framework for cognitive modeling than as an AI system. One can
Please cite this article as: B. Goertzel, et al., World survey of artifi
Neurocomputing (2010), doi:10.1016/j.neucom.2010.08.012
fairly easily use ACT-R to program models of specific human
mental behaviors, which may then be matched against psycho-
logical and neurobiological data.
3. Emergentist cognitive architectures

Another species of cognitive architecture expects abstract
symbolic processing to emerge from lower-level ’’subsymbolic’’
dynamics, which usually (but not always) are heavily biologically
inspired, and designed to simulate neural networks or other
aspects of human brain function. These architectures are typically
strong at recognizing patterns in high-dimensional data, reinfor-
cement learning and associative memory; but no one has yet
shown how to achieve high-level functions such as abstract
reasoning or complex language processing using a purely
subsymbolic approach. A few of the more important subsymbolic,
emergentist cognitive architectures are as follows:
�

cial
Hierarchical Temporal Memory (HTM) [10], is a hierarchical
temporal pattern recognition architecture, presented as both
an AI approach and a model of the cortex. So far it has been
used exclusively for vision processing.

�
 DeSTIN [11,12] which contains a hierarchical perception

network similar to (but more functional than) HTM, and also
contains coordinated hierarchical networks dealing with
action and reinforcement.

�
 IBCA (Integrated Biologically based Cognitive Architecture)

[13], is a large-scale emergent architecture that seeks to model
distributed information processing in the brain, especially the
posterior and frontal cortex and the hippocampus. It has been
used to simulate various human psychological and psycholin-
guistic behaviors, but has not been shown to give rise to
higher-level behaviors like reasoning or subgoaling.
brains, Part II: Biologically inspired cognitive architectures,
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NOMAD (Neurally Organized Mobile Adaptive Device) auto-
mata [14], are based on Edelman’s ‘‘Neural Darwinism’’ model
of the brain, and feature large numbers of simulated neurons
evolving by natural selection into configurations that carry out
sensorimotor and categorization tasks. The emergence of
higher-level cognition from this approach seems particularly
unlikely.

�
 Ben Kuipers has pursued an extremely innovative research

program which combines qualitative reasoning [15] and
reinforcement learning [16] to enable an intelligent agent to
learn how to act, perceive and model the world. Kuipers’ notion
of ‘‘bootstrap learning’’ [17] involves allowing the robot to learn
almost everything about its world, including for instance the
Fig. 4. High-level architecture of DeSTIN.

. 5. Small-scale instantiation of the DeSTIN perceptual hierarchy. Each box repres

rarchy corresponding to larger regions). O denotes the current observation in the r

taining to two subsequent time steps. In each node, a statistical learning algorithm i

state of the higher-layer node.

lease cite this article as: B. Goertzel, et al., World survey of artifi
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structure of 3D space and other things that humans and other
animals obtain via their genetic endowments.

There is also a set of emergentist architectures focused
specifically on developmental robotics, which we will review
below in a separate section, as all of these share certain common
characteristics.

As an example of this category, we now review the DeSTIN
emergentist architecture in more detail, and then turn to the
developmental robotics architectures.

3.1. DeSTIN: a deep reinforcement learning based BICA

The DeSTIN architecture, created by Itamar Arel and his
colleagues, addresses the problem of general intelligence using
hierarchical spatiotemporal networks designed to enable scalable
perception, state inference and reinforcement-learning-guided
action in real-world environments. DeSTIN has been developed
with the plan of gradually extending it into a complete system for
humanoid robot control, founded on the same qualitative
information-processing principles as the human brain (though,
distinguishing it from the large-scale brain simulations reviewed
in Part I of this paper, without striving for detailed biological
realism). The practical work with DeSTIN to date has focused on
visual and auditory processing; and here we will discuss DeSTIN
primarily in the perception context, only briefly mentioning the
application to actuation which is conceptually similar.

In DeSTIN (see Figs. 4, 5), perception is carried out by a deep
spatiotemporal inference network, which is connected to a
similarly architected critic network that provides feedback on
the inference network’s performance, and an action network that
controls actuators based on the activity in inference network. The
nodes in these networks perform probabilistic pattern recognition
according to algorithms to be described below; and the nodes in
each of the networks may receive states of nodes in the
other networks as inputs, providing rich interconnectivity and
synergetic dynamics.
ents a node, which corresponds to a spatiotemporal region (nodes higher in the

egion, C is the state of the higher-layer node, and S and S0 denote state variables

s used to predict subsequent states based on prior states, current observations, and

cial brains, Part II: Biologically inspired cognitive architectures,
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3.1.1. Deep versus shallow learning for perceptual data processing

The most critical feature of DeSTIN is its robust approach to
modeling the world based on perceptual data. Mimicking the
efficiency and robustness by which the human brain analyzes and
represents information has been a core challenge in AI research
for decades—and is one of the main reasons why AI researchers
have turned to biologically inspired architectures. Humans are
exposed to massive amounts of sensory data every second of
every day, and are somehow able to capture critical aspects of it in
a way that allows for appropriate future recollection and action
selection. The brain apparently achieves this via neural computa-
tion on its massively parallel fabric, in which computation
processes and memory storage are highly distributed. DeSTIN is
one of a number of recent architectures that seeks to emulate the
human brain’s capability for massively parallel sensation-based
world-modeling using a ‘‘deep learning’’ approach, in which
detailed biological simulation is not attempted, but use is made of
a hierarchical pattern recognition network architected similarly to
relevant parts of the brain.

Humanlike intelligence is heavily adapted to the physical
environments in which humans evolved; and one key aspect of
sensory data coming from our physical environments is its
hierarchical structure. However, most machine learning and
pattern recognition systems are ’’shallow’’ in structure, not
explicitly incorporating the hierarchical structure of the world
in their architecture. In the context of perceptual data processing,
the practical result of this is the need to couple each shallow
learner with a pre-processing stage, wherein high-dimensional
sensory signals are reduced to a lower-dimension feature space
that can be understood by the shallow learner. The hierarchical
structure of the world is thus crudely captured in the hierarchy of
’’preprocessor plus shallow learner’’. In this sort of approach,
much of the intelligence of the system shifts to the feature
extraction process, which is often imperfect and always applica-
tion-domain specific.

Deep machine learning has emerged as a more promising
framework for dealing with complex, high-dimensional real-
world data. Deep learning systems possess a hierarchical
structure that intrinsically biases them to recognize the hier-
archical patterns present in real-world data. Thus, they hierarchi-
cally form a feature space that is driven by regularities in the
observations, rather than by hand-crafted techniques. They also
offer robustness to many of the distortions and transformations
that characterize real-world signals, such as noise, displacement,
scaling, etc.

Deep belief networks [18] and Convolutional Neural Networks
[19] have been demonstrated to successfully address pattern
inference in high dimensional data (e.g. images). They owe
their success to their underlying paradigm of partitioning large
data structures into smaller, more manageable units, and
discovering the dependencies that may or may not exist between
such units. However, the deep learning paradigm as manifested
in these approaches has significant limitations; for instance,
these approaches do not represent temporal information with the
same ease as spatial structure. Moreover, some key constraints
are imposed on the learning schemes driving these archi-
tectures, namely the need for layer-by-layer training, and
oftentimes pre-training. DeSTIN seeks to overcome the limitations
of prior deep learning approaches to perception processing, and
also extends beyond perception to action and reinforcement
learning.
3.1.2. DeSTIN for perception processing

The hierarchical architecture of DeSTIN’s spatiotemporal
inference network comprises an arrangement into multiple layers
Please cite this article as: B. Goertzel, et al., World survey of artifi
Neurocomputing (2010), doi:10.1016/j.neucom.2010.08.012
of ’’nodes’’ comprising multiple instantiations of an identical
cortical circuit. Each node corresponds to a particular spatiotem-
poral region, and uses a statistical learning algorithm to
characterize the sequences of patterns that are presented to it
by nodes in the layer beneath it. More specifically,
�

cial
at the very lowest layer of the hierarchy nodes receive as input
raw data (e.g. pixels of an image) and continuously construct a
belief state that attempts to characterize the sequences of
patterns viewed,

�
 the second layer, and all those above it, receive as input the

belief states of nodes at their corresponding lower layers, and
attempt to construct belief states that capture regularities in
their inputs, and

�
 each node also receives as input the belief state of the node

above it in the hierarchy (which constitutes ’’contextual’’
information).

DeSTIN’s basic belief update rule, which governs the learning
process and is identical for every node in the architecture, is as
follows. The belief state is a probability mass function over the
sequences of stimuli that the nodes learn to represent. Conse-
quently, each node is allocated a predefined number of state
variables each denoting a dynamic pattern, or sequence, that is
autonomously learned. We seek to derive an update rule that
maps the current observation (o), belief state (b), and the belief
state of a higher-layer node (c), to a new (updated) belief state
(b’), such that

b
0

s
0� �
¼ Pr s

0

9o,b,c
� �

¼ Prðs0\o\b\cÞ

Prðo\b\cÞ
ð1Þ

alternatively expressed as

b
0

ðs
0

Þ ¼
Pr o9s

0

,b,c
� �

Prðs
0

9b,cÞPrðb,cÞ

Prðo9b,cÞPrðb,cÞ
ð2Þ

Under the assumption that observations depend only on true
state, or Pr o9s

0

,b,c
� �

¼Pr (o9s0 ), we can further simplify the
expression such that

b
0

ðs
0

Þ ¼
Prðo9s

0

ÞPrðs
0

9b,cÞ

Prðo9b,cÞ
ð3Þ

where yielding the belief update rule

Prðs
0

9b,cÞ ¼
X

sA S

Prðs
0

9s,cÞbðsÞ

b
0

ðs
0

Þ ¼
Prðo9s

0

Þ
P

sA SPrðs
0

9s,cÞbðsÞP
s00 ASPrðo9s00 Þ

P
sASPrðs00 9s,cÞbðsÞ

ð4Þ

where S denotes the sequence set (i.e. belief dimension) such
that the denominator term is a normalization factor. One
interpretation of (4) would be that the static pattern similarity
metric Prðo9s

0

Þ is modulated by a construct that reflects the
system dynamics Prðs

0

9s,cÞ. As such, the belief state inherently
captures both spatial and temporal information. In our imple-
mentation, the belief state of the parent node c is chosen using the
selection rule

c¼ argmaxsbpðsÞ ð5Þ

where bp is the belief distribution of the parent node. A closer look
at Eq. (4) reveals that there are two core constructs to be learned,
Prðo9s

0

Þ and Prðs
0

9s,cÞ:We show that the former can be learned via
online clustering while the latter is learned based on experience
by adjusting of the parameters with each transition from s to
s
0

given c. The result is a robust framework that autonomously (i.e.
with no human engineered pre-processing of any type) learns to
brains, Part II: Biologically inspired cognitive architectures,
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represent complex data patterns, such as those found in real-life
robotics applications. Based on these equations, the DeSTIN
perceptual network serves the critical role of building and
maintaining a model of the state of the world. In a vision
processing context, for example, it allows for powerful unsuper-
vised classification. If shown a variety of real-world scenes, it will
automatically form internal structures corresponding to the
various natural categories of objects shown in the scenes, such
as trees, chairs, people, etc., and also the various natural
categories of events it sees, such as reaching, pointing, falling.
And, as will be discussed below, it can use feedback from DeSTIN’s
action and critic networks to further shape its internal world-
representation based on reinforcement signals.

DeSTIN’s perceptual network offers multiple key attributes
that render it a powerful approach to sensory data processing:
1.
P
N

The belief space that is formed across the layers of the
perceptual network inherently captures both spatial and

temporal regularities in the data. Given that many applications
require that temporal information be discovered for robust
inference, this is a key advantage over existing schemes.
2.
 Spatiotemporal regularities in the observations are captured in
a coherent manner (rather than being represented via two
separate mechanisms).
3.
 All processing is both top-down and bottom-up, and both
hierarchical and heterarchical, based on nonlinear feedback
connections directing activity and modulating learning in
multiple directions through DeSTIN’s cortical circuits.
4.
 Support for multi-modal fusing is intrinsic within the frame-
work, yielding a powerful state inference system for real-
world, partially observable settings.
5.
 Each node is identical, which makes it easy to map the design
to massively parallel platforms, such as graphics processing
units.
1 http://im-clever.noze.it/project/project-description.
3.1.3. DeSTIN for action and control

DeSTIN’s perceptual network performs unsupervised world-
modeling, which is a critical aspect of intelligence but of course is
not the whole story. DeSTIN’s action network, coupled with the
perceptual network, orchestrates actuator commands into com-
plex movements, but also carries out other functions that are
more cognitive in nature.

For instance, people learn to distinguish between cups and
bowls in part via hearing other people describe some objects as
cups and others as bowls. To emulate this kind of learning,
DeSTIN’s critic network provides positive or negative reinforce-
ment signals based on whether the action network has correctly
identified a given object as a cup or a bowl, and this signal then
impacts the nodes in the action network. The critic network takes
a simple external ’’degree or success or failure’’ signal and turns it
into multiple reinforcement signals to be fed into the multiple
layers of the action network. The result is that the action network
self-organizes so as to include an implicit ’’cup versus bowl’’
classifier, whose inputs are the outputs of some of the nodes in
the higher levels of the perceptual network. This classifier belongs
in the action network because it is part of the procedure by which
the DeSTIN system carries out the action of identifying an object
as a cup or a bowl.

This example illustrates how the learning of complex concepts
and procedures is divided fluidly between the perceptual net-
work, which builds a model of the world in an unsupervised way,
and the action network, which learns how to respond to the world
in a manner that will receive positive reinforcement from the
critic network.
lease cite this article as: B. Goertzel, et al., World survey of artifi
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3.2. Developmental robotics architectures

Now we turn to another category of emergentist cognitive
architectures: developmental robotics architectures, focused on
controlling robots without significant ’’hard-wiring’’ of knowledge
or capabilities, allowing robots to learn (and learn how to learn,
etc.) via their engagement with the world. A significant focus is
often placed here on ’’intrinsic motivation’’, wherein the robot
explores the world guided by internal goals like novelty or
curiosity, forming a model of the world as it goes along, based on
the modeling requirements implied by its goals. Many of the
foundations of this research area were laid by Schmidhuber’s
work in the 1990s [20–23], but now with more powerful
computers and robots the area is leading to more impressive
practical demonstrations.

We mention here a handful of the important initiatives in this
area:
�

cial
Weng’s Dav [24] and SAIL [25] projects involve mobile robots
that explore their environments autonomously, and learn to
carry out simple tasks by building up their own world-
representations through both unsupervised and teacher-
driven processing of high-dimensional sensorimotor data.
The underlying philosophy is based on human child develop-
ment [26], the knowledge representations involved are neural
network based, and a number of novel learning algorithms are
involved, especially in the area of vision processing.

�
 FLOWERS [27], an initiative at the French research institute

INRIA, led by Pierre-Yves Oudeyer, is also based on a principle
of trying to reconstruct the processes of development of the
human child’s mind, spontaneously driven by intrinsic moti-
vations. Kaplan [28] has taken this project in a directly closely
related to the present one via the creation of a ‘‘robot
playroom.’’ Experiential language learning has also been a
focus of the project [29], driven by innovations in speech
understanding.

�
 IM-CLEVER,1 a new European project coordinated by Gianluca

Baldassarre and conducted by a large team of researchers at
different institutions, which is focused on creating software
enabling an iCub [30] humanoid robot to explore the
environment and learn to carry out human childlike behaviors
based on its own intrinsic motivations. As this project is the
closest to our own we will discuss it in more depth below.

IM-CLEVER is a humanoid robot intelligence architecture guided
by intrinsic motivations, and using a hierarchical architecture
for reinforcement learning and sensory abstraction. IM-CLEVER’s
motivational structure is based in part on Schmidhuber’s informa-
tion-theoretic model of curiosity [31]. On the other hand,
IM-CLEVER’s use of reinforcement learning follows Schmidhuber’s
earlier work RL for cognitive robotics [32,33], Barto’s work on
intrinsically motivated reinforcement learning [34,35], and Lee’s
[36,37] work on developmental reinforcement learning.

A skeptic of this research area might argue that, while the
philosophy underlying developmental robotics is solid, the
learning and representational mechanisms underlying the current
systems in this area are probably not powerful enough to lead to
human child level intelligence. Thus, it seems possible that these
systems will develop interesting behaviors but fall short of robust
human brain level competency, especially in areas like language
and reasoning where symbolic systems have typically proved
more effective. On the other hand, once the mechanisms under-
lying brains are better understood and robotic bodies are richer in
brains, Part II: Biologically inspired cognitive architectures,

http://im-clever.noze.it/project/project-description
dx.doi.org/10.1016/j.neucom.2010.08.012


B. Goertzel et al. / Neurocomputing ] (]]]]) ]]]–]]] 7
sensation and more adept in actuation, the developmental
approach might grow into something more powerful.
4. Hybrid cognitive architectures

Finally, in response to the complementary strengths and
weaknesses of the symbolic and emergentist approaches, in
recent years a number of researchers have turned to integrative,
hybrid architectures, which combine subsystems operating
according to the two different paradigms. The combination may
be done in many different ways, e.g. connection of a large
symbolic subsystem with a large subsymbolic system, or the
creation of a population of small agents each of which is both
symbolic and subsymbolic in nature.

Nilsson expressed the motivation for hybrid cognitive archi-
tectures very clearly in his article at the AI-50 conference (which
celebrated the 50th anniversary of the AI field) [38]. While
affirming the value of the Physical Symbol System Hypothesis
that underlies symbolic AI, he argues that ’’the PSSH explicitly
assumes that, whenever necessary, symbols will be grounded in
objects in the environment through the perceptual and effector
capabilities of a physical symbol system.’’ Thus, he continues,

I grant the need for non-symbolic processes in some intelligent
systems, but I think they supplement rather than replace
symbol systems. I know of no examples of reasoning, under-
standing language, or generating complex plans that are best
understood as being performed by systems using exclusively
non-symbolic processesy

AI systems that achieve human-level intelligence will involve a
combination of symbolic and non-symbolic processing.

A few of the more important hybrid cognitive architectures are
as follows:
�

P
N

CLARION [39] is a hybrid architecture that combines a
symbolic component for reasoning on ‘‘explicit knowledge’’
with a connectionist component for managing ‘‘implicit
knowledge.’’ Learning of implicit knowledge may be done via
neural net, reinforcement learning, or other methods. The
integration of symbolic and subsymbolic methods is powerful,
but a great deal is still missing such as episodic knowledge and
learning and creativity. Learning in the symbolic and subsym-
bolic portions is carried out separately rather than dynamically
coupled, minimizing ‘‘cognitive synergy’’ effects.

�
 DUAL [40] is the most impressive system to come out of

Marvin Minsky’s ‘‘Society of Mind’’ paradigm. It features a
population of agents, each of which combines symbolic and
connectionist representation, self-organizing to collectively
carry out tasks such as perception, analogy and associative
memory. The approach seems innovative and promising, but it
is unclear how the approach will scale to high-dimensional
data or complex reasoning problems due to the lack of a more
structured high-level cognitive architecture.

�
 LIDA [41] is a comprehensive cognitive architecture heavily

based on Bernard Baars’ ‘‘Global Workspace Theory’’. It
articulates a ‘‘cognitive cycle’’ integrating various forms of
memory and intelligent processing in a single processing loop.
The architecture ties in well with both neuroscience and
cognitive psychology, but it deals most thoroughly with ‘‘lower
level’’’ aspects of intelligence, handling more advanced aspects
like language and reasoning only somewhat sketchily. There is
a clear mapping between LIDA structures and processes and
corresponding structures and processing in OCP; so that it is
only a mild stretch to view CogPrime as an instantiation of the
general LIDA approach that extends further both in the lower
lease cite this article as: B. Goertzel, et al., World survey of artificial
eurocomputing (2010), doi:10.1016/j.neucom.2010.08.012
level (to enable robot action and sensation via DeSTIN) and the
higher level (to enable advanced language and reasoning via
OCP mechanisms that have no direct LIDA analogues).

�
 MicroPsi [42] is an integrative architecture based on Dietrich

Dorner’s Psi model of motivation, emotion and intelligence. It
has been tested on some practical control applications, and
also on simulating artificial agents in a simple virtual world.
MicroPsi’s comprehensiveness and basis in neuroscience and
psychology are impressive, but in the current version of
MicroPsi, learning and reasoning are carried out by algorithms
that seem unlikely to scale. OCP incorporates the Psi model for
motivation and emotion, so that MicroPsi and CogPrime may
be considered very closely related systems. But similar to LIDA,
MicroPsi currently focuses on the ‘‘lower level’’ aspects of
intelligence, not yet directly handling advanced processes like
language and abstract reasoning.

�
 PolyScheme [43] integrates multiple methods of representation,

reasoning and inference schemes for general problem solving.
Each Polyscheme specialist models a different aspect of the world
using specific representation and inference techniques, interact-
ing with other specialists and learning from them. Polyscheme
has been used to model infant reasoning including object
identity, events, causality, and spatial relations. The integration
of reasoning methods is powerful, but the overall cognitive
architecture is simplistic compared to other systems and seems
focused more on problem solving than on the broader problem of
intelligent agent control.

�
 Shruti [44] is a fascinating biologically inspired model of

human reflexive inference, represents in connectionist archi-
tecture relations, types, entities and causal rules using focal-
clusters. However, much like Hofstadter’s earlier Copycat
architecture [45], Shruti seems more interesting as a prototype
exploration of ideas than as a practical artificial brain system;
at least, after a significant time of development it has not
proved significant effective in any applications

�
 James Albus’s 4D/RCS robotics architecture shares a great

deal with some of the emergentist architectures discussed
above, e.g. it has the same hierarchical pattern recognition
structure as DeSTIN and HTM, and the same three cross-
connected hierarchies as DeSTIN, and shares with the devel-
opmental robotics architectures a focus on real-time adapta-
tion to the structure of the world. However, 4D/RCS is not
foundationally learning based but relies on hard-wired
architecture and algorithms, intended to mimic the qualitative
structure of relevant parts of the brain (and intended to be
augmented by learning, which differentiates it from emergen-
tist approaches).

�
 OpenCogPrime is a comprehensive architecture for cognition,

language, and virtual agent control, created by the BenGoertzel
and Cassio Pennachin and their collaborators during the period
since 2001 (and building on their work from the 1990s).
Conceptually founded on the systems theory of intelligence
outlined in [46] and alluded to above, it is currently under
development within the open-source OpenCog AI framework
(http://opencog.org and [47]).
Many of the hybrid architectures are in essence ‘‘multiple,

disparate algorithms carrying out separate functions, encapsu-
lated in black boxes and communicating results with each other.’’
For instance, PolyScheme, ACT-R and CLARION all display this
‘‘modularity’’ property to a significant extent. These architectures
lack the rich, real-time interaction between the internal dynamics

of various memory and learning processes that seems character-
istics of the human brain, and that we conjecture is critical to
achieving human brainlike general intelligence using realistic
computational resources. On the other hand, there are also hybrid
architectures that feature richer integration – such as DUAL,
brains, Part II: Biologically inspired cognitive architectures,
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Shruti, LIDA, OpenCog and MicroPsi – though many of these have
the flaw of relying (at least in their current versions) on overly
simplistic learning algorithms, which drastically limit their
scalability.

It does seem plausible to us that some of these hybrid
architectures could be dramatically extended or modified so as to
produce humanlike general intelligence. For instance, one
could replace LIDA’s learning algorithms with others that interrelate
with each other in a nuanced synergetic way, or one could replace
MicroPsi’s simple learning and reasoning methods with much more
powerful and scalable ones acting on the same data structures.
However, making these changes would dramatically alter the
cognitive architectures in question on multiple levels.

We now review several hybrid architectures in more detail,
focusing most deeply on LIDA, MicroPsi, and OpenCog.

4.1. CLARION

Ron Sun’s CLARION architecture is interesting in its combina-
tion of symbolic and neural aspects—a combination that is used
in a sophisticated way to embody the distinction and interaction
between implicit and explicit mental processes. From a CLARION
perspective, architectures like Soar and ACT-R are severely limited
in that they deal only with explicit knowledge and associated
learning processes.

As shown in Fig. 6 [39], CLARION consists of a number of
distinct subsystems, each of which contains a dual representa-
tional structure, including a ’’rules and chunks’’ symbolic knowl-
edge store somewhat similar to ACT-R, and a neural net
knowledge store embodying implicit knowledge. The main
subsystems are as follows:
�

P
N

An action-centered subsystem to control actions.

�
 A non-action-centered subsystem to maintain general knowl-

edge.

�
 A motivational subsystem to provide underlying motivations

for perception, action, and cognition.

�
 A meta-cognitive subsystem to monitor, direct, and modify the

operations of all the other subsystems.

4.2. DUAL

In his influential but controversial book The Society of Mind [48],
Marvin Minsky describes a model of human intelligence as some-
Fig. 6. The CLARIO

lease cite this article as: B. Goertzel, et al., World survey of artifi
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thing that is built up from the interactions of numerous simple
agents. He spells out in great detail how various particular cognitive
functions may be achieved via agents and their interactions. He
leaves no room for any central algorithms or structures of thought,
famously arguing: ’’What magical trick makes us intelligent? The
trick is that there is no trick. The power of intelligence stems from
our vast diversity, not from any single, perfect principle.’’

This perspective was extended in the more recent work The

Emotion Machine [49], where Minsky argued that emotions are
’’ways to think’’ evolved to handle different ’’problem types’’ that
exist in the world. The brain is posited to have rule-based
mechanisms (selectors) that turn on emotions to deal with
various problems.

Overall, both of these works serve better as works of
speculative cognitive science than as works of AI or cognitive
architecture per se. As neurologist Richard Restak said in his
review of Emotion Machine, ’’Minsky does a marvelous job parsing
other complicated mental activities into simpler elements. ... But
he is less effective in relating these emotional functions to what’s
going on in the brain.’’ As Restak did not add, he is also not so
effective at relating these emotional functions to straightfor-
wardly implementable algorithms or data structures.

Push Singh, in his Ph.D. thesis [50], did the best job so far of
creating a concrete AI design based oclosely n Minsky’s ideas.
Singh’s system was certainly interesting, it was also noteworthy
for its lack of any learning mechanisms, and its exclusive focus on
explicit rather than implicit knowledge. Singh’s work was never
completed due to his tragic death; and it seems fair to say that
there has not yet been a serious cognitive architecture posed
based closely on Minsky’s ideas.

The nearest thing to a Minsky-style cognitive architecture is
probably DUAL, which takes the Society of Mind concept and adds
to it a number of other interesting ideas. DUAL integrates
symbolic and connectionist approaches at a deeper level than
CLARION, and has been used to model various cognitive functions
such as perception, analogy and judgment. Computations in DUAL
emerge from the self-organized interaction of many micro-agents,
each of which is a hybrid symbolic/connectionist device. Each
DUAL agent plays the role of a neural network node, with an
activation level and activation spreading dynamics; but also plays
the role of a symbol, manipulated using formal rules. The agents
exchange messages and activation via links that can be learned
and modified, and they form coalitions which collectively
represent concepts, episodes, and facts.

The structure of the model is sketchily shown in Fig. 7 [40],
which covers the application of DUAL to a toy environment
N architecture.

cial brains, Part II: Biologically inspired cognitive architectures,
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Fig. 7. The three main components of the model: the retinotopic visual array (RVA), the visual working memory (VWM), and DUAL’s semantic memory. Attention is

allocated to an area of the visual array by the object in VWM controlling attention, while scene and object categories corresponding to the contents of VWM are retrieved

from the semantic memory.
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called TextWorld. The visual input corresponding to a stimulus is
presented on a two-dimensional visual array representing the
front end of the system. Perceptual primitives like blobs and
terminations are immediately generated by cheap parallel computa-
tions. Attention is controlled at each time by an object which
allocates it selectively to some area of the stimulus. A detailed
symbolic representation is constructed for this area which tends
to fade away as attention is withdrawn from it and allocated to
another one. Categorization of visual memory contents takes
place by retrieving object and scene categories from DUAL’s
semantic memory and mapping them onto current visual memory
representations.
2 http://ccrg.cs.memphis.edu/tutorial/synopsis.html.
4.3. 4D/RCS

In a rather different direction, James Albus, while at the
National Bureau of Standards, developed a very thorough and
impressive architecture for intelligent robotics called 4D/RCS,
which was implemented in a number of machines including
unmanned automated vehicles. This architecture lacks critical
aspects of intelligence such as learning and creativity, but
combines perception, action, planning, and world-modeling in a
highly effective and tightly integrated fashion (Figs. 8 and 9).

In a striking parallel to DeSTIN as reviewed above, the
architecture has three hierarchies of memory/processing units:
one for perception, one for action and one for modeling and
guidance. Each unit has a certain spatiotemporal scope, and
(except for the lowest level) supervenes over children whose
spatiotemporal scope is a subset of its own. The action hierarchy
takes care of decomposing tasks into subtasks, whereas the
sensation hierarchy takes care of grouping signals into entities
and events. The modeling/guidance hierarchy mediates interac-
tions between perception and action based on its understanding
of the world and the system’s goals.

In his book [51] Albus describes methods for extending 4D/RCS
into a complete cognitive architecture, but these extensions have
not been elaborated in full detail nor implemented.

The traditional implementations of 4D/RCS are not closely brain-
like except in overall conception, but in recent work Albus has tied
Please cite this article as: B. Goertzel, et al., World survey of artifi
Neurocomputing (2010), doi:10.1016/j.neucom.2010.08.012
4D/RCS in more tightly with detailed theories of brain function. Fig. 12
[65] shows a neural implementation of a portion of Albus’s 4D/RCS
perceptual hierarchy, where the nodes in the hierarchy are
implemented by Cortical Computational Units (CCUs) mimicking
brain structure. Figs. 10 and 12 [65] shows the software implementa-
tion of a CCU, and Fig. 11 [65] shows how Albus conjectures the same
functionality to be implemented in the human brain.

4.4. LIDA

The LIDA architecture developed by Stan Franklin and his
colleagues [52] is based on the concept of the cognitive cycle—a
notion that is important to nearly every BICA and also to the brain,
but that plays a particularly central role in LIDA. As Franklin says,
as a matter of principle, every autonomous agent, be it human,
animal, or artificial, must frequently sample (sense) its environ-
ment, process (make sense of) this input, and select an appropriate
response (action). The agent’s life can be viewed as consisting of a
continual sequence of iterations of these cognitive cycles. Such
cycles constitute the indivisible elements of attention, the least
sensing and acting to which we can attend. A cognitive cycle can be
thought of as a moment of cognition, a cognitive moment.

The simplest cognitive cycle is that of an animal, which senses
the world, compares sensation to memory, and chooses an action,
all in one fluid subjective moment. But the same cognitive cycle
structure/process applies to higher-level cognitive processes as
well. The LIDA architecture is based on the LIDA model of the
cognitive cycle, which posits a particular structure underlying the
cognitive cycle that possess the generality to encompass both
simple and complex cognitive moments.

Fig. 132 shows the cycle pictorially, starting in the upper left
corner and proceeding clockwise. At the start of a cycle, the LIDA
agent perceives its current situation and allocates attention
differentially to various parts of it. It then broadcasts information
about the most important parts (which constitute the agent’s
consciousness), and this information gets features extracted from
it, when then get passed along to episodic and semantic memory,
cial brains, Part II: Biologically inspired cognitive architectures,
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Fig. 8. [64]: Albus’s 4D-RCS architecture for a single vehicle.
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that interact in the global workspace to create a model of the
agent’s current situation. This model then, in interaction with
procedural memory, enables the agent to choose an appropriate
action and execute it the critical section-selection phase!

4.5. The LIDA cognitive cycle in more depth3

We now run through the LIDA cognitive cycle in more detail. It
begins with sensory stimuli from the agent’s external internal
environment. Low-level feature detectors in sensory memory
begin the process of making sense of the incoming stimuli. These
low-level features are passed to perceptual memory where
higher-level features, objects, categories, relations, actions, situa-
tions, etc. are recognized. These recognized entities, called
percepts, are passed to the workspace, where a model of the
agent’s current situation is assembled.

Workspace structures serve as cues to the two forms of
episodic memory, yielding both short and long term remembered
local associations. In addition to the current percept, the work-
space contains recent percepts that have not yet decayed away,
and the agent’s model of the then-current situation previously
assembled from them. The model of the agent’s current situation
is updated from the previous model using the remaining percepts
and associations. This updating process will typically require
looking back to perceptual memory and even to sensory memory,
to enable the understanding of relations and situations. This
assembled new model constitutes the agent’s understanding of its
current situation within its world. Via constructing the model, the
agent has made sense of the incoming stimuli.
3 This section paraphrases in some places from [53].

Please cite this article as: B. Goertzel, et al., World survey of artifi
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Now attention allocation comes into play, because a real agent
lacks the computational resources to work with all parts of its
world-model with maximal mental focus. Portions of the model
compete for attention. These competing portions take the form of
(potentially overlapping) coalitions of structures comprising parts
the model. Once one such coalition wins the competition, the
agent has decided what to focus its attention on.

And now comes the purpose of all this processing: to help the
agent to decide what to do next. The winning coalition passes to
the global workspace, the namesake of Global Workspace Theory,
from which it is broadcast globally. Though the contents of this
conscious broadcast are available globally, the primary recipient
is procedural memory, which stores templates of possible actions
including their contexts and possible results.

Procedural memory also stores an activation value for each such
template—a value that attempts to measure the likelihood of an
action taken within its context producing the expected result. It is
worth noting that LIDA makes a rather specific assumption here.

Templates whose contexts intersect sufficiently with the
contents of the conscious broadcast instantiate copies of them-
selves with their variables specified to the current situation. These
instantiations are passed to the action selection mechanism,
which chooses a single action from these instantiations and those
remaining from previous cycles. The chosen action then goes to
sensorimotor memory, where it picks up the appropriate algo-
rithm by which it is then executed. The action so taken affects the
environment, and the cycle is complete.

The LIDA model hypothesizes that all human cognitive
processing is via a continuing iteration of such cognitive cycles.
It acknowledges that other cognitive processes may also occur,
refining and building on the knowledge used in the cognitive
cycle (for instance, the cognitive cycle itself does not mention
cial brains, Part II: Biologically inspired cognitive architectures,
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abstract reasoning or creativity). But the idea is that these other
processes occur in the context of the cognitive cycle, which is the
main loop driving the internal and external activities of the
organism.

4.5.1. Neural correlates of LIDA cognitive processes

Stan Franklin and the other developers of LIDA, together with
Bernard Baars and other neuroscientists have conducted an
ongoing effort towards creating a concordance between the
modules and processes of the LIDA model and their possible
neural correlates. Table 1a and b presents some of the conclusions
Fig. 10. Internal structure of a Cortical Computational Unit (CCU) consisting of a

CCUframe, a library of procedures that maintain the frame, and a set of processors

that implement the procedures.

Fig. 11. Inputs and outputs of a Cortical Com

Please cite this article as: B. Goertzel, et al., World survey of artifi
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of this investigation, but the reader is encouraged to peruse the
full list online at [61] to get a sense of the full impressiveness of
this initiative. In addition to the connection with LIDA specifically,
this is one of the most carefully constructed systematic mappings
between brain regions and cognitive functions of which we are
aware.
4.5.2. Avoiding combinatorial explosion via adaptive attention

allocation

As the worst problem plaguing traditional symbolic cognitive
architectures is ‘‘combinatorial explosion’’ – the overabundance of
possible combinations of memory items and new concepts and
processes to evaluate in the context of choosing actions to achieve
goals – it is interesting to ask how various BICAs use brainlike
methods to overcome this issue. LIDA has a fairly compelling
solution to the problem, at least conceptually (as with other BICAs,
the experimental work with LIDA to date has not been thorough
enough to fully validate the solution). In essence, LIDA avoids
combinatorial explosions in its inference processes via two methods:
�

puta

cial
combining reasoning via association with reasoning via
deduction and

�
 foundational use of uncertainty in reasoning.

One can create an analogy between LIDA’s workspace
structures and codelets and a symbolic architecture’s assertions
and functions or production rules. However, LIDA’s codelets only
operate on the structures that are active in the workspace during
any given cycle. This includes recent perceptions, their closest
matches in other types of memory, and structures recently
created by other codelets. The results with the highest estimate
of success, i.e. activation, will then be selected.
tional Unit (CCU) in posterior cortex.

brains, Part II: Biologically inspired cognitive architectures,
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Uncertainty plays a role in LIDA’s reasoning in several ways,
most notably through the base activation of its behavior codelets,
which depend on the model’s estimated probability of the codelets
success if triggered. LIDA observes the results of its behaviors and
updates the base activation of the responsible codelets dynamically.
Fig. 12. Two levels of segmentation and grouping of entity frames.

Fig. 13. The LIDA c

Please cite this article as: B. Goertzel, et al., World survey of artifi
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4.6. Psi and microPsi

Next we consider Joscha Bach’s MicroPsi architecture, which is
closely based on Dietrich Dorner’s Psi theory, roughly shown in
Fig. 14 [60]. One could argue that MicroPsi is more psychologically

inspired than biologically inspired, but the boundary becomes
extremely blurry, e.g. because Dorner’s psychological models
involve networks of processing units with many broadly neuron-
like properties.

Psi’s motivational system begins with Demands, which are the
basic factors that motivate the agent. For an animal these would
include things like food, water, sex, novelty, socialization,
protection of one’s children, etc. For an intelligent robot they
might include things like electrical power, novelty, certainty,
socialization, well-being of others and mental growth.

Psi also specifies two fairly abstract demands and posits them
as psychologically fundamental (see Fig. 15 [60]):
�

ogn

cial
competence, the effectiveness of the agent at fulfilling its
Urges, and

�
 certainty, the confidence of the agent’s knowledge.

Each demand is assumed to come with a certain ‘‘target level’’
or ‘‘target range’’ (and these may fluctuate over time, or may
change as a system matures and develops). An Urge is said to
develop when a demand deviates from its target range: the urge
then seeks to return the demand to its target range. For instance, in
an animal-like agent the demand related to food is more clearly
described as ‘‘fullness,’’ and there is a target range indicating that
the agent is neither too hungry nor too full of food. If the agent’s
itive cycle.

brains, Part II: Biologically inspired cognitive architectures,

dx.doi.org/10.1016/j.neucom.2010.08.012


Table 1a
Possible neural correlates of cognitive processes and modules from the LIDA model of cognition. The first column of the table lists the LIDA model module or process

(function) that’s involved with the cognitive process(es) listed in the second column; the third column lists possible neural correlates of the cognitive process in question,

meaning that there is evidence of the stated neural assemblies being involved with that process (clearly, neural assemblies other than those listed by are also involved).

LIDA module or function Cognitive processes Neural correlates include

Sensory motor automatism Sensory motor automatism Cerebellum

Sensory memory Temporal-prefrontal (echoic)

Slipnet Perceptual associative memory (PAM) Perirhinal cortex

Slipnet object nodes PAM-visual object recognition Inferotemporal cortex (IT), perirhinal cortex

Slipnet PAM-phenomenal visual experience Medial temporal lobe

Slipnet PAM-categorization-sensory Sensory neocortex

Slipnet PAM-categorization-abstract Lateral and anterior prefrontal structures

Slipnet PAM-categorization-motion lateral intraparietal

Slipnet face nodes PAM-visual face recognition Inferotemporal cortex (IT)

Slipnet face and other object nodes PAM-recognition of faces and other objects Fusiform face area

Slipnet emotion nodes PAM-emotions Amygdala and orbito-frontal cortex

Slipnet PAM-emotion affecting learning Basolateral amygdala, perirhinal cortex, entorhinal

cortex

Slipnet fear nodes PAM-memory of fear Lateral nucleus of the amygdala

Slipnet novelty node PAM-novelty Substantia nigra/ventral tegmental area

Slipnet action situation nodes PAM-recognize action situation—e.g. eating a peanut Mirror neurons in the perisylvian cortical region

Slipnet reward nodes PAM-reward for action or its avoidance Medial orbitofrontal cortex

Slipnet reward nodes PAM-stimulus-reward associations Orbitofrontal cortex/ventral striatum

Slipnet emotion nodes PAM-romantic love Brainstem right ventral tegmental area and right

postero-dorsal body of the caudate nucleus

Slipnet self movement nodes & place nodes PAM-self movement input to location cognitive map Entorhinal cortex, hippocampus

Slipnet category nodes Perceptual learning of concepts Hippocampus

Slipnet feeling nodes Feelings, bodily states, social emotions Insula

Attention codelets Attention to objects Posterior parietal cortex

Attention codelets Higher visual scene processing Frontal eye fields

Table 1b
Possible neural correlates of cognitive processes and modules from the LIDA model of cognition. The first column of the table lists the LIDA model module or process

(function) that is involved with the cognitive process(es) listed in the second column; The third column lists possible neural correlates of the cognitive process in question,

meaning that there is evidence of the stated neural assemblies being involved with that process (clearly, neural assemblies other than those listed by are also involved).

Global workspace Global broadcast Long-distance synchronization of gamma oscillations

Schemenet Procedural learning Striatum

Schemenet Procedural memory Basal ganglia, cortical motor regions, cerebellar structures

PL attention codelets Procedural learning Corticostriatal synapses

Scheme net Procedural learning Ventral striatum

Scheme net Procedural memory Anterior cingulate cortex, Striatum

Behavior net Action selection Prefrontal cortex

Behavior net Action selection Striatum, basal ganglia

Behavior net Emotions modulating action selection Amygdala, Orbital and medial prefrontal cortex

Sensory-motor memory Cerebellum

Sensory-motor control of balance and navigation Semicircular canals

Sensory-motor innate behaviors command chemical-central peptidergic ensembles

Sensory-motor memory Action execution Dorsal striatum

Motor representations of sequential procedures Right intraparietal sulcus

Cognitive cycle Cognitive cycle Few hundred ms

Cognitive cycle Cognitive cycle 200–300 ms

Cognitive cycle Cognitive cycle Coupled theta–gamma rhythms

Cognitive cycle EEG microstate

Reflexive decision making amygdala, basal ganglia, ventromedial prefrontal cortex,

dorsal anterior cingulate cortex, lateral temporal cortex

Reflective decision making Lateral prefrontal cortex, posterior parietal cortex, medial

prefrontalal cortex, rostral anterior cingulate cortex, and

hippocampus and surrounding medial temporal lobe region

Emotions in moral decision making Ventromedial prefrontal cortex
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fullness deviates from this range, an Urge to return the demand to
its target range arises. Similarly, if an agent’s novelty deviates from
its target range, this means the agent’s life has gotten either too
boring or too disconcertingly weird, and the agent gets an Urge
for either more interesting activities (in the case of below-
range novelty) or more familiar ones (in the case of above-range
novelty).

There is also a primitive notion of Pleasure (and it is opposite,
displeasure), which is considered as different from the complex
emotion of ‘‘happiness.’’ Pleasure is understood as associated with
Please cite this article as: B. Goertzel, et al., World survey of artifi
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Urges: pleasure occurs when an Urge is (at least partially)
satisfied, whereas displeasure occurs when an urge gets increas-
ingly severe. The degree to which an Urge is satisfied is not
necessarily defined instantaneously; it may be defined, for
instance, as a time-decaying weighted average of the proximity
of the demand to its target range over the recent past.

So, for instance if an agent is bored and gets a lot of novel
stimulation, then it experiences some pleasure. If it is bored and
then the monotony of its stimulation gets even more extreme,
then it experiences some displeasure.
cial brains, Part II: Biologically inspired cognitive architectures,
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Note that, according to this relatively simplistic approach, any
decrease in the amount of dissatisfaction causes some pleasure;
whereas if everything always continues within its acceptable range,
there is not any pleasure. This may seem a little counterintuitive,
but it’s important to understand that these simple definitions of
‘‘pleasure’’ and ‘‘displeasure’’ are not intended to fully capture the
natural language concepts associated with those words. The natural
language terms are used here simply as heuristics to convey the
general character of the processes involved. These are very low level
Fig. 14. High-level architecture of the Psi model.

Fig. 15. Primary interrelationshi
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processes whose analogues in human experience are largely below
the conscious level.

A Goal is considered as a statement that the system may strive
to make true at some future time. A Motive is an (urge, goal) pair,
consisting of a goal whose satisfaction is predicted to imply the
satisfaction of some urge. In fact one may consider Urges as top-
level goals, and the agent’s other goals as their subgoals.

In Psi an agent has one ‘‘ruling motive’’ at any point in time, but
this seems an oversimplification more applicable to simple animals
than to human-like or other advanced AI systems. In general one
may think of different motives having different weights indicating
the amount of resources that will be spent on pursuing them.

Emotions in Psi are considered as complex systemic response-
patterns rather than explicitly constructed entities. An emotion is the
set of mental entities activated in response to a certain set of urges.
Dorner conceived theories about how various common emotions
emerge from the dynamics of urges and motives as described in the
Psi model. ‘‘Intentions’’ are also considered as composite entities: an
intention at a given point in time consists of the active motives,
together with their related goals, behavior programs, etc.

The basic logic of action in Psi is carried out by ‘‘triplets’’ that
are very similar to production rules in classical symbolic systems
like SOAR and ACT-R, in a manner to be described below.
However, an important role is also played by four modulators
that control how the processes of perception, cognition, and
action selection are regulated at a given time:
�

ps b

cial
activation, which determines the degree to which the agent is
focused on rapid, intensive activity versus reflective, cognitive
activity,

�
 resolution level, which determines how accurately the system

tries to perceive the world,

�
 certainty, which determines how hard the system tries to

achieve definite, certain knowledge, and
etween Psi modulators.
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�
 selection threshold, which determines how willing the system is
to change its choice of which goals to focus on.

These modulators characterize the system’s emotional and
cognitive state at a very abstract level; they are not emotions
per se, but they have a large effect on the agent’s emotions. Their
intended interaction is shown in Fig. 15.

4.6.1. Knowledge representation, action selection, and planning

in Psi

On the micro level, Psi represents knowledge using closely
brain-inspired structures called ‘‘quads.’’ Each quad is a cluster of
5 neurons containing a core neuron, and four other neurons
representing before/after and part-of/has-part relationships in
regard to that core neuron. Quads are naturally assembled into
spatiotemporal hierarchies, though they are not required to form
part of such a structure.

Psi stores knowledge using quads arranged in three networks,
which are conceptually similar to the networks in Albus’s 4D/RCS
and Arel’s DeSTIN architectures:
�

P
N

A sensory network, which stores declarative knowledge:
schemas representing images, objects, events and situations
as hierarchical structures.

�
 A motor network, which contains procedural knowledge by

way of hierarchical behavior programs.

�
 A motivational network handling demands.

Perception in Psi, which is centered in the sensory network,
follows principles similar to DeSTIN (which are shared also by other
systems), for instance the principle of perception as prediction. Psi’s
‘‘HyPercept’’ mechanism performs hypothesis-based perception: it
attempts to predict what is there to be perceived and then attempts
to verify these predictions using sensation and memory. Further-
more HyPercept is intimately coupled with actions in the external
world, according to the concept of ‘‘Neisser’s perceptual cycle,’’ the
cycle between exploration and representation of reality. Percep-
tually acquired information is translated into schemas capable of
guiding behaviors, and these are enacted (sometimes affecting the
world in significant ways) and in the process used to guide further
perception. Imaginary perceptions are handled via a ‘‘mental stage’’
analogous to CogPrime’s internal simulation world.

Action selection in Psi works based on what are called
‘‘triplets,’’ each of which consists of
�
 a sensor schema (pre-conditions, ‘‘condition schema’’),

�
 a subsequent motor schema (action, effector), and

�
 a final sensor schema (post-conditions, expectations).
What distinguishes these triplets from classic production rules
as used in (say) Soar and ACT-R is that the triplets may be partial
(some of the three elements may be missing) and may be
uncertain. The difference lies in the underlying knowledge
representation used for the schemata, and the probabilistic logic
used to represent the implication.

The work of figuring out what schema to execute to achieve
the chosen goal in the current context is done in Psi using a
combination of processes called the ‘‘Rasmussen ladder’’ (named
after Danish psychologist Jens Rasmussen). The Rasmussen ladder
describes the organization of action as a movement between the
stages of skill-based behavior, rule-based behavior and knowl-
edge-based behavior, as follows:
�
 If a given task amounts to a trained routine, an automatism or
skill is activated; it can usually be executed without conscious
attention and deliberative control.
lease cite this article as: B. Goertzel, et al., World survey of artifi
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�

cial
If there is no automatism available, a course of action might be
derived from rules; before a known set of strategies can be
applied, the situation has to be analyzed and the strategies
have to be adapted.

�
 In those cases where the known strategies are not applicable, a

way of combining the available manipulations (operators) into
reaching a given goal has to be explored at first. This stage
usually requires a recomposition of behaviors, that is, a
planning process.

The planning algorithm used in the Psi and MicroPsi implemen-
tations is a fairly simple hill-climbing planner. While it is
hypothesized that a more complex planner may be needed for
advanced intelligence, part of the Psi theory is the hypothesis that
most real-life planning an organism needs to do is fairly simple, once
the organism has the right perceptual representations and goals.

4.7. OpenCogPrime

Finally, OpenCogPrime (OCP), a cognitive architecture devel-
oped by several of the co-authors of this paper, combines multiple
AI paradigms such as uncertain-logic, computational linguistics,
evolutionary program learning and connectionist attention allo-
cation in a unified cognitive-science-based architecture. Cognitive
processes embodying these different paradigms interoperate
together on a common neural-symbolic knowledge store called
the Atomspace.

The high-level architecture of OCP, shown in Fig. 16, involves
the use of multiple cognitive processes associated with multiple
types of memory to enable an intelligent agent to execute the
procedures that it believes have the best probability of working
toward its goals in its current context. In a robot preschool
context, for example (the context for which OCP is currently being
primarily developed), the top-level goals will be simple things
such as pleasing the teacher, learning new information and skills,
and protecting the robot’s body.

4.7.1. Memory and cognition in OpenCogPrime

OCP’s memory types are the declarative, procedural, sensory,
and episodic memory types that are widely discussed in cognitive
neuroscience [54], plus attentional memory for allocating system
resources generically, and intentional memory for allocating
system resources in a goal-directed way. Table 2 overviews these
memory types, giving key references and indicating the corre-
sponding cognitive processes, and also indicating which of the
generic patternist cognitive dynamics each cognitive process
corresponds to (pattern creation, association, etc.).

The essence of the OCP design lies in the way the structures
and processes associated with each type of memory are designed
to work together in a closely coupled way, yielding cooperative
intelligence going beyond what could be achieved by an
architecture merely containing the same structures and processes
in separate ‘‘black boxes’’.

Specifically, the inter-cognitive-process interactions in Open-
Cog are designed so that
�
 conversion between different types of memory is possible;
though sometimes computationally costly (e.g. an item of
declarative knowledge may with some effort be interpreted
procedurally or episodically, etc.), and

�
 when a learning process concerned centrally with one type of

memory encounters a situation where it learns very slowly, it
can often resolve the issue by converting some of the relevant
knowledge into a different type of memory: i.e. cognitive
synergy.
brains, Part II: Biologically inspired cognitive architectures,
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Fig. 16. High-level CogBot architecture diagram.

Table 2
Memory types and cognitive processes in OpenCogPrime. The third column indicates the general cognitive function that each specific cognitive process carries out,

according to the patternist theory of cognition.

Memory type Specific cognitive processes General cognitive functions

Declarative Probabilistic logic networks (PLN) [55]; conceptual blending [56] Pattern creation

Procedural MOSES (a novel probabilistic evolutionary program learning

algorithm) [57]

Pattern creation

Episodic Internal simulation engine [58] Association, pattern creation

Attentional Economic attention networks (ECAN) [59] Association, credit assignment

Intentional Probabilistic goal hierarchy refined by PLN and ECAN, structured

according to MicroPsi [60]

Credit assignment, pattern creation

Sensory In CogBot, this will be supplied by the DeSTIN component Association, attention allocation, pattern creation, credit

assignment
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4.7.2. OpenCog versus MicroPsi

OCP’s dynamics has both goal-oriented and ‘‘spontaneous’’
aspects; here for simplicity’s sake we will focus here on the goal-
oriented ones. The basic goal-oriented dynamic of the OCP
system, within which the various types of memory are utilized,
is driven by implications known as ‘‘cognitive schematics’’, which
take the form

Context & Procedure) Goal/pS

summarized C L P)G). Semi-formally, such implication may
interpret to mean: ’’If the context C appears to hold currently,
Please cite this article as: B. Goertzel, et al., World survey of artifi
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then if I enact the procedure P, I can expect to achieve the goal G

with certainty p.’’ There is a strong parallel with production rules,
and an even stronger parallel with MicroPsi’s triplets, which
incorporate uncertainty in a similar way.

Apart from the incorporation of uncertainty and the ability to
cope with missing information, the biggest difference between
OCP/MicroPsi schematics/triplets and production rules or other
similar constructs, is that in OCP this level of knowledge
representation is not the only important one. CLARION seeks to
work around the limitations of production rules by using them
only for explicit knowledge representation, and then using a totally
separate subsymbolic knowledge store for implicit knowledge.
cial brains, Part II: Biologically inspired cognitive architectures,
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In OCP, similarly to MicroPsi, both explicit and implicit knowledge
are stored in the same graph of nodes and links, with
�

P
N

explicit knowledge stored in probabilistic logic based nodes
and links such as cognitive schematics, and

�
 implicit knowledge stored in patterns of activity among these

same nodes and links, defined via the activity of the
’’importance’’ values associated with nodes and links and
propagated by the ECAN attention allocation process.

The meaning of a cognitive schematic in OCP is hence not
entirely encapsulated in its explicit logical form, but resides
largely in the activity patterns that ECAN causes its activation or
exploration to give rise to. And this fact is important because the
synergetic interactions of system components are in large part
modulated by ECAN activity. Without the real-time combination
of explicit and implicit knowledge in the system’s knowledge
graph, the synergetic interaction of different cognitive processes
would not work so smoothly, and the emergence of effective high-
level structures in the system’s knowledge base would be less
likely.

4.7.3. Current and prior applications of OpenCog

OpenCogPrime has been used for commercial applications in
the area of natural language processing and data mining; for
instance, see [62] where OpenCog’s PLN reasoning and RelEx
language processing are combined to do automated biological
hypothesis generation based on information gathered from
PubMed abstracts. It has also been used to control virtual agents
in virtual worlds [58], using an OpenCog variant called the
OpenPetBrain (see Fig. 17) for a screenshot of an OpenPetBrain-
controlled virtual dog, and see http://novamente.net/example for
some videos of these virtual dogs in action. The CogBot project is a
Fig. 17. Screenshot of OpenCo

lease cite this article as: B. Goertzel, et al., World survey of artifi
eurocomputing (2010), doi:10.1016/j.neucom.2010.08.012
natural extension to humanoid robotics of this prior work in
virtual worlds.

While the OpenCog virtual dogs do not display intelligence
closely comparable to that of real dogs (or humans!), they do
demonstrate a variety of relevant functionalities including
�

g-c

cial
learning new behaviors based on imitation and reinforcement,

�
 responding to natural language commands and questions, with

appropriate actions and natural language replies, and

�
 spontaneous exploration of their world, remembering their

experiences and using them to bias future learning and
linguistic interaction.

A current research project involves hybridizing OCP with other
systems that handle lower-level sensorimotor intelligence, and
using the combination to control a humanoid robot. DeSTIN is
being experimented within this role, along with evolvable neural
networks as described in [63]. Fig. 17 shows the basic architecture
of such an integration, in the DeSTIN context.
5. Concluding discussion

In this two-part paper, we have surveyed only a representative
sample of the extant work in the field of artificial brains—there is
a lot more out there. And furthermore, it seems likely that this
current crop of artificial brain research projects will be dwarfed in
the next few years by new entrants, due to the combination of
Moore’s Law and its allies with our equally rapidly increasing
knowledge of neural architecture and micro-circuitry.

But even from the limited amount of work surveyed here, one
may draw some interesting conclusions. One fairly obvious
phenomenon worth drawing attention to is the gap between the
BICA and brain-simulation approaches. Both approaches seek to
ontrolled virtual dog.
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leverage recent advances in hardware and neuroscience to create
artificial brains, but so far the two approaches display very
different strengths.

Brain simulations tell us about cortical columns and about the
way collections of neurons ‘‘spontaneously’’ organize into collec-
tives, but they do not yet tell us anything specific about how
brains achieve goals, select actions or process information. On the
other hand, BICAs tell us how brains may do things, but so far
their intelligent behaviors are quite simplistic compared to real
brains. This differential may be due to processing power, or as we
conjecture it may be because the BICAs lack the chaotic, complex
generativity that comes from neural nonlinear dynamics—i.e.
they have the sensible and brainlike higher-level structures, but
lack the lower-level complexity and emergence that one sees in
large-scale brain simulations.

Based on these observations, our conjecture is that the future
of artificial brain research lies in three directions:
1.
P
N

Large-scale brain simulations that simulate multiple brain
regions and their interconnections, thus verging on being
BICAs.
2.
 BICAs that integrate more detailed neural dynamics into their
processing, enabling greater creativity and flexibility of
response.
3.
 Hybrid architectures that link BICA elements with brain
simulation elements.

By bringing large-scale brain simulations and BICAs together,
we suggest, we will most rapidly progress toward the twin goals
of understanding the brain and emulating human-like intelligence
in digital computers.
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